8 research outputs found

    Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin

    Get PDF
    This work was funded by the Neonatal Unit Endowment Fund, Aberdeen Maternity Hospital. RH is funded by a career researcher fellowship from NHS Research Scotland. SG was funded by the MRC Flagship PhD programme. We are grateful for the support of Dr Phil Cash and Aberdeen Proteomics, at University of Aberdeen, in completing this project. Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24811-3.Peer reviewedPublisher PD

    β-Glucan is a major growth substrate for human gut bacteria related to Coprococcus eutactus

    Get PDF
    A clone encoding carboxymethyl cellulase activity was isolated during functional screening of a human gut metagenomic library using Lactococcus lactis MG1363 as heterologous host. The insert carried a glycoside hydrolase family 9 (GH9) catalytic domain with sequence similarity to a gene from Coprococcus eutactus ART55/1. Genome surveys indicated a limited distribution of GH9 domains among dominant human colonic anaerobes. Genomes of C. eutactus-related strains harboured two GH9-encoding and four GH5-encoding genes, but the strains did not appear to degrade cellulose. Instead, they grew well on β-glucans and one of the strains also grew on galactomannan, galactan, glucomannan and starch. Coprococcus comes and Coprococcus catus strains did not harbour GH9 genes and were not able to grow on β-glucans. Gene expression and proteomic analysis of C. eutactus ART55/1 grown on cellobiose, β-glucan and lichenan revealed similar changes in expression in comparison to glucose. On β-glucan and lichenan only, one of the four GH5 genes was strongly upregulated. Growth on glucomannan led to a transcriptional response of many genes, in particular a strong upregulation of glycoside hydrolases involved in mannan degradation. Thus, β-glucans are a major growth substrate for species related to C. eutactus, with glucomannan and galactans alternative substrates for some strains

    APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>5-Fluorouracil(5FU) and oral analogues, such as capecitabine, remain one of the most useful agents for the treatment of colorectal adenocarcinoma. Low toxicity and convenience of administration facilitate use, however clinical resistance is a major limitation. Investigation has failed to fully explain the molecular mechanisms of resistance and no clinically useful predictive biomarkers for 5FU resistance have been identified. We investigated the molecular mechanisms of clinical 5FU resistance in colorectal adenocarcinoma patients in a prospective biomarker discovery project utilising gene expression profiling. The aim was to identify novel 5FU resistance mechanisms and qualify these as candidate biomarkers and therapeutic targets.</p> <p>Methods</p> <p>Putative treatment specific gene expression changes were identified in a transcriptomics study of rectal adenocarcinomas, biopsied and profiled before and after pre-operative short-course radiotherapy or 5FU based chemo-radiotherapy, using microarrays. Tumour from untreated controls at diagnosis and resection identified treatment-independent gene expression changes. Candidate 5FU chemo-resistant genes were identified by comparison of gene expression data sets from these clinical specimens with gene expression signatures from our previous studies of colorectal cancer cell lines, where parental and daughter lines resistant to 5FU were compared. A colorectal adenocarcinoma tissue microarray (n = 234, resected tumours) was used as an independent set to qualify candidates thus identified.</p> <p>Results</p> <p>APRIL/TNFSF13 mRNA was significantly upregulated following 5FU based concurrent chemo-radiotherapy and in 5FU resistant colorectal adenocarcinoma cell lines but not in radiotherapy alone treated colorectal adenocarcinomas. Consistent withAPRIL's known function as an autocrine or paracrine secreted molecule, stromal but not tumour cell protein expression by immunohistochemistry was correlated with poor prognosis (p = 0.019) in the independent set. Stratified analysis revealed that protein expression of APRIL in the tumour stroma is associated with survival in adjuvant 5FU treated patients only (n = 103, p < 0.001), and is independently predictive of lack of clinical benefit from adjuvant 5FU [HR 6.25 (95%CI 1.48-26.32), p = 0.013].</p> <p>Conclusions</p> <p>A combined investigative model, analysing the transcriptional response in clinical tumour specimens and cancers cell lines, has identified APRIL, a novel chemo-resistance biomarker with independent predictive impact in 5FU-treated CRC patients, that may represent a target for novel therapeutics.</p

    Tumor transcriptome reveals the predictive and prognostic impact of lysosomal protease inhibitors in non-small-cell lung cancer

    No full text
    PURPOSE: Insight into clinical response to platinum-based chemotherapy (PBC) in non-small-cell lung cancer (NSCLC).METHODS: Matched tumor and nontumor lung tissues from PBC-treated NSCLC patients (four nonresponders and four responders) and tumor tissue from an independent test set (four nonresponders and four responders), were profiled using microarrays. Lysosomal protease inhibitors SerpinB3 and cystatin C were highly correlated with clinical response and were further evaluated by immunohistochemistry in PBC-treated patients (36 prechemotherapy and 13 postchemotherapy). Investigation of the pathogenic and prognostic significance of SerpinB3 was performed in 251 primary tumors, with 64 regional lymph node pairs, from chemotherapy-naïve NSCLC patients using immunohistochemistry.RESULTS: Bioinformatic analyses of gene expression in the training set identified a gene set (n = 17) that separated all patients in the training and test sets (n = 16) according to response in hierarchical clustering. Transcriptome profiling revealed that SerpinB3 mRNA was highly correlated with degree of response (r = -0.978; P &lt; .0001) and was a clear outlier (nonresponders:responders &gt; 50-fold). SerpinB3 protein expression was correlated with clinical response in PBC-treated NSCLC patients (P = .045). Expression of SerpinB3 and cystatin C, relative to the target, protease cathepsin B, was independently predictive of response (odds ratio, 17.8; 95% CI, 2.0 to 162.4; P = .01), with an accuracy of 72%. High SerpinB3 expression levels, invariably associated with chemoresistance, had contrasting prognostic impact in untreated squamous cell carcinomas (hazard ratio [HR], 0.43; 95% CI, 0.18 to 0.93) or adenocarcinomas (HR, 2.09; 95% CI, 1.03 to 4.72).CONCLUSION: This provides the first comprehensive molecular characterization of clinical responsiveness to PBC in NSCLC and reveals the predictive and prognostic impact of two lysosomal protease inhibitors, potentially representing novel targets for NSCLC therapeutics.</p

    Gene Expression Analysis of Human Fetal Ovarian Primordial Follicle Formation

    No full text
    Context: Primordial follicle formation dictates the maximal potential female reproductive capacity and establishes the ovarian reserve. Currently, little is known about this process in the human. Objective: The aim of the study was to identify genes associated with the onset of human fetal primordial follicle formation in morphologically normal human fetuses. Design: We conducted an observational study of the female fetal gonad, comparing gene expression before and during primordial follicle formation. Setting: The study was conducted at the Universities of Aberdeen, Glasgow, and Nottingham. Patients/Participants: Ovaries were collected from 51 morphologically normal human female fetuses of women undergoing elective termination of normal second trimester pregnancies. Main Outcome Measures: We performed fetal ovarian transcript expression by Affymetrix array and quantitative RT-PCR and gene product expression and localization by Western blot and immunohistochemistry. Results: Five transcripts were down-regulated and 61 were up-regulated in ovaries from older fetuses (18-20 wk) in which primordial follicle formation had started compared with younger (15-16 wk) fetuses in which no primordial follicles were observed. The altered genes contribute to major functions, including gene expression, tissue morphology, and apoptosis, that are essential for ovarian development. NALP5, the most highly regulated transcript, is an oocyte-specific maternal effect gene that is regulated downstream of FIGLA. Conclusions: NALP5 probably plays a key role in the onset of human primordial follicle formation and thus the establishment of ovarian reserve in women. (J Clin Endocrinol Metab 94: 1427-1435, 2009
    corecore